nanostructures and electrocatalysis for green hydrogen production

In the near future, fossil fuels must be substituted by renewable energy sources, following the decarbonization plans established and supported by multiple international institutions and agencies. However, renewable energy sources are by definition intermittent, and thus appropriate storage media will be required for their deployment. The opportunity to store electrical energy as hydrogen obtained from water splitting opens a real alternative. Is water electrolysis ready for the challenge? Hydrogen is produced at the industrial level from fossil fuels, mostly natural gas. Indeed, methane reforming accounts for over 96% of the global hydrogen production, emitting ≈ 7 Kg of CO$_2$ per kilogram of H$_2$ produced. The very low price point of this fossil hydrogen (now called “grey hydrogen”), precluded the evolution of electrolytic hydrogen. Electrolyzer technology remained small and niche for special applications, with intrinsic significantly higher costs. An urgent technology development is now required for water electrolysis to become a reliable, cost effective and large scale technology to foster the energy transition to renewables and the industrial decarbonization plans.

This course will introduce water electrolysis, focusing on the state-of-the-art and future challenges highlighting the need for nanoscience, as a technology enabler. We will divide the course in these lectures:

1- History of water electrolysis: Invention and deployment of the industrial water electrolyzer. Evolution through the centuries, and current trends.
5- Renewable energy sources and water electrolysis: matching and mixing. From modular approaches to the artificial leaf.

Tuesday 7, 11.30-13.00
Wednesday 8, 14.00-15.30
Thursday 9, 14.00-15.30
Tuesday 14, 11.30-13.00
Wednesday 15, 14.00-15.30
Thursday 16, 14.00-15.30